Data-driven System to Predict Academic Grades and Dropout

dc.contributor.authorRovira Cisterna, Sergi
dc.contributor.authorPuertas i Prats, Eloi
dc.contributor.authorIgual Muñoz, Laura
dc.date.accessioned2018-02-20T15:40:16Z
dc.date.available2018-02-20T15:40:16Z
dc.date.issued2017-02-14
dc.date.updated2018-02-20T15:40:16Z
dc.description.abstractNowadays, the role of a tutor is more important than ever to prevent students dropout and improve their academic performance. This work proposes a data-driven system to extract relevant information hidden in the student academic data and, thus, help tutors to offer their pupils a more proactive personal guidance. In particular, our system, based on machine learning techniques, makes predictions of dropout intention and courses grades of students, as well as personalized course recommendations. Moreover, we present different visualizations which help in the interpretation of the results. In the experimental validation, we show that the system obtains promising results with data from the degree studies in Law, Computer Science and Mathematics of the Universitat de Barcelona.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec669482
dc.identifier.issn1932-6203
dc.identifier.pmid28196078
dc.identifier.urihttps://hdl.handle.net/2445/120044
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0171207
dc.relation.ispartofPLoS One, 2017, vol. 12, num. 2, p. e0171207
dc.relation.urihttps://doi.org/10.1371/journal.pone.0171207
dc.rightscc-by (c) Rovira, Sergi et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationRendiment acadèmic
dc.subject.otherMachine learning
dc.subject.otherAcademic achievement
dc.titleData-driven System to Predict Academic Grades and Dropout
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
669482.pdf
Mida:
2.31 MB
Format:
Adobe Portable Document Format