Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing

dc.contributor.authorAzizi, Juzaili
dc.contributor.authorJoseph, Adrian
dc.contributor.authorContini, Claudia
dc.contributor.authorCecchin, Denis
dc.contributor.authorNyberg, Sophie
dc.contributor.authorRuiz-Perez, Lorena
dc.contributor.authorPreston, Jane
dc.contributor.authorVolpe, Giorgio
dc.contributor.authorBattaglia, Giuseppe
dc.contributor.authorGaitzsch, Jens
dc.contributor.authorFullstone, Gavin
dc.contributor.authorTian, Xiaohe
dc.date.accessioned2025-09-03T15:06:22Z
dc.date.available2025-09-03T15:06:22Z
dc.date.issued2017-08-02
dc.date.updated2025-09-03T15:06:22Z
dc.description.abstractIn recent years, scientists have created artificial microscopic and nanoscopic self-propelling particles, often referred to as nano- or microswimmers, capable of mimicking biological locomotion and taxis. This active diffusion enables the engineering of complex operations that so far have not been possible at the micro- and nanoscale. One of the most promising tasks is the ability to engineer nanocarriers that can autonomously navigate within tissues and organs, accessing nearly every site of the human body guided by endogenous chemical gradients. We report a fully synthetic, organic, nanoscopic system that exhibits attractive chemotaxis driven by enzymatic conversion of glucose. We achieve this by encapsulating glucose oxidase alone or in combination with catalase into nanoscopic and biocompatible asymmetric polymer vesicles (known as polymersomes). We show that these vesicles self-propel in response to an external gradient of glucose by inducing a slip velocity on their surface, which makes them move in an extremely sensitive way toward higher-concentration regions. We finally demonstrate that the chemotactic behavior of these nanoswimmers, in combination with LRP-1 (low-density lipoprotein receptor–related protein 1) targeting, enables a fourfold increase in penetration to the brain compared to nonchemotactic systems.<span style="color:rgba( 0 , 0 , 0 , 0 )"> recent years, </span>
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec752187
dc.identifier.urihttps://hdl.handle.net/2445/222935
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1126/sciadv.1700362
dc.relation.ispartofScience Advances, 2017
dc.relation.urihttps://doi.org/10.1126/sciadv.1700362
dc.rightscc-by (c) Adrian J. et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationBarrera hematoencefàlica
dc.subject.classificationPolímers
dc.subject.classificationQuimiotaxi
dc.subject.otherBlood-brain barrier
dc.subject.otherPolymers
dc.subject.otherChemotaxis
dc.titleChemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
871997.pdf
Mida:
6.81 MB
Format:
Adobe Portable Document Format