Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc-nd (c)  Gispert, J. et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/225275

On Nilpotent Minimum logics defined by lattice filters and their paraconsistent non-falsity preserving companions.

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Nilpotent Minimum logic (NML) is a substructural algebraizable logic that is a distinguished member of the family of systems of Mathematical Fuzzy logic, and at the same time it is the axiomatic extension with the prelinearity axiom of Nelson and Markov’s Constructive logic with strong negation. In this paper our main aim is to characterize and axiomatize paraconsistent variants of NML and its extensions defined by (sets of) logical matrices over linearly ordered NM-algebra with lattice filters as designated values, with special emphasis on those that only exclude the falsum truth-value, called non-falsity preserving logics. We also consider turning these non-falsity preserving logics into Logics of Formal Inconsistency by expanding them with a consistency operator, and we axiomatize them as well. Finally, we provide a full description of the logics defined by finite products of matrices over finite NM-chains.

Matèries (anglès)

Citació

Citació

GISPERT BRASÓ, Joan, ESTEVA MASSAGUER, Francesc, GODO I LACASA, Lluís, CONIGLIO, Marcelo e.. On Nilpotent Minimum logics defined by lattice filters and their paraconsistent non-falsity preserving companions.. _Logic Journal of the IGPL_. 2025. Vol. 33, núm. 3. [consulta: 30 de gener de 2026]. ISSN: 1367-0751. [Disponible a: https://hdl.handle.net/2445/225275]

Exportar metadades

JSON - METS

Compartir registre