Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193621
Endomorphism algebras of geometrically split abelian surfaces over $Q$
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We determine the set of geometric endomorphism algebras of geometrically split abelian surfaces defined over $\mathbb{Q}$. In particular we find that this set has cardinality 92 . The essential part of the classification consists in determining the set of quadratic imaginary fields $M$ with class group $\mathrm{C}_2 \times \mathrm{C}_2$ for which there exists an abelian surface $A$ defined over $\mathbb{Q}$ which is geometrically isogenous to the square of an elliptic curve with CM by $M$. We first study the interplay between the field of definition of the geometric endomorphisms of $A$ and the field $M$. This reduces the problem to the situation in which $E$ is a $\mathbb{Q}$ curve in the sense of Gross. We can then conclude our analysis by employing Nakamura's method to compute the endomorphism algebra of the restriction of scalars of a Gross $\mathbb{Q}$-curve.
Matèries (anglès)
Citació
Citació
FITÉ NAYA, Francesc, GUITART MORALES, Xavier. Endomorphism algebras of geometrically split abelian surfaces over $Q$. _Algebra & Number Theory_. 2020. Vol. 14, núm. 6, pàgs. 1399-1421. [consulta: 23 de gener de 2026]. ISSN: 1937-0652. [Disponible a: https://hdl.handle.net/2445/193621]