Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193621

Endomorphism algebras of geometrically split abelian surfaces over $Q$

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We determine the set of geometric endomorphism algebras of geometrically split abelian surfaces defined over $\mathbb{Q}$. In particular we find that this set has cardinality 92 . The essential part of the classification consists in determining the set of quadratic imaginary fields $M$ with class group $\mathrm{C}_2 \times \mathrm{C}_2$ for which there exists an abelian surface $A$ defined over $\mathbb{Q}$ which is geometrically isogenous to the square of an elliptic curve with CM by $M$. We first study the interplay between the field of definition of the geometric endomorphisms of $A$ and the field $M$. This reduces the problem to the situation in which $E$ is a $\mathbb{Q}$ curve in the sense of Gross. We can then conclude our analysis by employing Nakamura's method to compute the endomorphism algebra of the restriction of scalars of a Gross $\mathbb{Q}$-curve.

Citació

Citació

FITÉ NAYA, Francesc, GUITART MORALES, Xavier. Endomorphism algebras of geometrically split abelian surfaces over $Q$. _Algebra & Number Theory_. 2020. Vol. 14, núm. 6, pàgs. 1399-1421. [consulta: 23 de gener de 2026]. ISSN: 1937-0652. [Disponible a: https://hdl.handle.net/2445/193621]

Exportar metadades

JSON - METS

Compartir registre