A novel mitochondrial Kv1.3-caveolin axis controls cell survival and apoptosis

dc.contributor.authorCapera Aragonés, Jesusa
dc.contributor.authorPérez-Verdaguer, Mireia
dc.contributor.authorPeruzzo, Roberta
dc.contributor.authorNavarro-Pérez, María
dc.contributor.authorMartínez-Pinna, Juan
dc.contributor.authorAlberola-Die, Armando
dc.contributor.authorMorales, Andrés
dc.contributor.authorLeanza, Luigi
dc.contributor.authorSzabó, Ildiko
dc.contributor.authorFelipe Campo, Antonio
dc.date.accessioned2022-03-16T16:00:40Z
dc.date.available2022-03-16T16:00:40Z
dc.date.issued2021-07-01
dc.date.updated2022-03-16T16:00:41Z
dc.description.abstractThe voltage-gated potassium channel Kv1.3 plays an apparent dual physiological role by participating in activation and proliferation of leukocytes as well as promoting apoptosis in several types of tumor cells. Therefore, Kv1.3 is considered a potential pharmacological target for immunodeficiency and cancer. Different cellular locations of Kv1.3, at the plasma membrane or the mitochondria, could be responsible for such duality. While plasma membrane Kv1.3 facilitates proliferation, the mitochondrial channel modulates apoptotic signaling. Several molecular determinants of Kv1.3 drive the channel to the cell surface, but no information is available about its mitochondrial targeting. Caveolins, which are able to modulate cell survival, participate in the plasma membrane targeting of Kv1.3. The channel, via a caveolin-binding domain (CDB), associates with caveolin 1 (Cav1), which localizes Kv1.3 to lipid raft membrane microdomains. The aim of our study was to understand the role of such interactions not only for channel targeting but also for cell survival in mammalian cells. By using a caveolin association-deficient channel (Kv1.3 CDBless), we demonstrate here that while the Kv1.3-Cav1 interaction is responsible for the channel localization in the plasma membrane, a lack of such interaction accumulates Kv1.3 in the mitochondria. Kv1.3 CDBless severely affects mitochondrial physiology and cell survival, indicating that a functional link of Kv1.3 with Cav1 within the mitochondria modulates the pro-apoptotic effects of the channel. Therefore, the balance exerted by these two complementary mechanisms fine-tune the physiological role of Kv1.3 during cell survival or apoptosis. Our data highlight an unexpected role for the mitochondrial caveolin-Kv1.3 axis during cell survival and apoptosis.
dc.format.extent24 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec715747
dc.identifier.issn2050-084X
dc.identifier.urihttps://hdl.handle.net/2445/184175
dc.language.isoeng
dc.publishereLife Sciences
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.7554/eLife.69099
dc.relation.ispartofeLife, 2021, vol. 10, p. 1-24
dc.relation.urihttps://doi.org/10.7554/eLife.69099
dc.rightscc-by (c) Capera, Jesusa et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject.classificationApoptosi
dc.subject.classificationADN mitocondrial
dc.subject.classificationImmunodeficiència
dc.subject.otherApoptosis
dc.subject.otherMitochondrial DNA
dc.subject.otherImmunodeficiency
dc.titleA novel mitochondrial Kv1.3-caveolin axis controls cell survival and apoptosis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
715747.pdf
Mida:
4.25 MB
Format:
Adobe Portable Document Format