El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Análisis de la motilidad intestinal utilizando Convolutional Deep Neural Network y la cápsula endoscópica

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.authorMartínez, Pablo (Martínez Martínez)
dc.date.accessioned2015-10-09T07:44:16Z
dc.date.available2015-10-09T07:44:16Z
dc.date.issued2015-06-27
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2015, Director: Santi Seguí Mesquidaca
dc.description.abstractCapsule endoscopy is a diagnostic technique that opens a wide field of research in the clinical area. Through the capsule, videos of the entire digestive tract can be obtained, as it is ingested by the patient. There are many projects related to the data extraction of these videos, one of them, a Convolutional Deep Neural Network which is able to classify images of the small intestine in six different classes. Nevertheless, since the v ́ıdeo is obtained until it's able to be processed by the Convolutional Deep Neural Network, a set of operations are needed. In the first part of this document, an approach to get this work done is proposed. In the second part, the results of the neural network are used to create an application that tries to find sequences in videos and segment the videos based on that sequences.ca
dc.format.extent59 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/67209
dc.language.isospaca
dc.rightsmemòria: cc-by-nc-sa (c) Pablo Martínez Martínez, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationVisió per ordinadorcat
dc.subject.classificationReconeixement de formes (Informàtica)cat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationCàpsula endoscòpicaca
dc.subject.classificationMotilitat gastrointestinalca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.otherComputer visioneng
dc.subject.otherPattern recognition systemseng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherDigital image processingeng
dc.subject.otherCapsule endoscopyeng
dc.subject.otherGastrointestinal motilityeng
dc.subject.otherNeural networks (Computer science)eng
dc.titleAnálisis de la motilidad intestinal utilizando Convolutional Deep Neural Network y la cápsula endoscópicaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
11.83 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria