K-means web clustering amb Hadoop MapReduce

dc.contributor.advisorPuertas i Prats, Eloi
dc.contributor.authorHuélamo Segura, Alberto
dc.date.accessioned2013-11-08T10:12:47Z
dc.date.available2013-11-08T10:12:47Z
dc.date.issued2013-06
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2013, Director: Eloi Puertas i Pratsca
dc.description.abstractThis paper proposes a solution to the problem of clustering large amount of web documents. The Hadoop framework, implementation of MapReduce distributed programming paradigm, developed by Google, plays a very important role in this field due to its scalability and ease to parallelize software. This is the reason why it is used in this project. Meanwhile, K-means clustering algorithm is easily adaptable to MapReduce programming model and provides proper results for web documents. The documents will be represented as a frequence vectors of terms and keywords and this is what algorithm needs to work. The developed software uses Hadoop in order to perform both tasks which make up the overall process: document processing and the clustering. Web documents are in HTML, which is not suitable for K-means. It is necessary preprocess them to extract descriptors and to pass them to the clustering algorithm. This is the first part of the process. The second part, K-means on Hadoop, goes beyond typical Hadoop execution, using most of the tools which Hadoop provides to make document clusters, from descriptors obtained from first part of the process.ca
dc.format.extent70 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/47608
dc.language.isocatca
dc.rightsmemòria: cc-by-nc-sa (c) Alberto Huélamo Segura, 2013
dc.rightscodi: GPL (c) Alberto Huélamo Segura, 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAnàlisi de conglomeratscat
dc.subject.classificationProcessament distribuït de dadescat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherCluster analysiseng
dc.subject.otherDistributed processing in electronic data processingeng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.titleK-means web clustering amb Hadoop MapReduceca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.68 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
src.zip
Mida:
6.17 MB
Format:
ZIP file
Descripció:
codi font