El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Modular architecture facilitates noise-driven control of synchrony in neuronal networks

dc.contributor.authorYamamoto, Hideaki
dc.contributor.authorSpitzner, F. Paul
dc.contributor.authorTakemuro, Taiki
dc.contributor.authorBuendía, Victor
dc.contributor.authorMurota, Hakuba
dc.contributor.authorMorante, Carla
dc.contributor.authorKonno, Tomohiro
dc.contributor.authorSato, Shigeo
dc.contributor.authorHirano-Iwata, Ayumi
dc.contributor.authorLevina, Anna
dc.contributor.authorPriesemann, Viola
dc.contributor.authorMuñoz Pérez, Miguel Ángel
dc.contributor.authorZierenberg, Johannes
dc.contributor.authorSoriano i Fradera, Jordi
dc.date.accessioned2025-06-11T15:45:33Z
dc.date.available2025-06-11T15:45:33Z
dc.date.issued2023-08-25
dc.date.updated2025-06-11T15:45:33Z
dc.description.abstractHigh-level information processing in the mammalian cortex requires both egregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec739575
dc.identifier.urihttps://hdl.handle.net/2445/221490
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1126/sciadv.ade1755
dc.relation.ispartofScience Advances, 2023, vol. 9, p. 1-12
dc.relation.urihttps://doi.org/10.1126/sciadv.ade1755
dc.rightscc-by (c) Yamamoto, H. et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationMamífers
dc.subject.classificationMètodes de simulació
dc.subject.otherNeural networks (Computer science)
dc.subject.otherMammals
dc.subject.otherSimulation methods
dc.titleModular architecture facilitates noise-driven control of synchrony in neuronal networks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
832717.pdf
Mida:
1.29 MB
Format:
Adobe Portable Document Format