El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Man-made structures detection from space

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorRibas Fernández, Eduard
dc.date.accessioned2020-05-25T07:19:52Z
dc.date.available2020-05-25T07:19:52Z
dc.date.issued2019-07-01
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] With the development of affordable and recurrent remote sensing technology, we can now access frequent geospatial information in different levels of detail, ranging from 100m to 0.01m. The task of detecting various types of man-made structure and man-induced change has become a key problem in remote sensing image analysis. In this work we focus on providing an answer to the question: What is the optimal trade-off between resolution and cost when aiming at determining the existence of man-made structures in remote sensing images? Obtaining this value is important not only for designing optimal satellite sensors but also to use optimal data sources when developing data-based remote sensing products. At a global level, this knowledge contributes to understand the impact of our species on the planet. Our approach is based on developing a Deep Learning detector to classify human impact on aerial images. In particular, we exploit recent advances of Convolutional Neural Networks (CNN) that were successfully used for object detection and scene classification. We apply transfer learning by integrating a ResNet pre-trained on ImageNet to perform image classification on datasets of few thousand aerial images that we have manually collected and annotated. Using this classification pipeline we are able to determine the existence of man-made structure with an accuracy of 95% at the best resolution. We study the performance of our detector for resolutions ranging from 0.3m to 16m. We observe a linear decrease of the classification accuracy down to about 81% at the lowest resolution. Furthermore, we estimate the cost associated to build, launch, capture, and process satellite images to detect human impact. We estimate that monitoring the entire land surface of the earth at 1m resolution amounts for about $15 million. This cost increases by about two orders of magnitude at the best resolution studied here, and decreases by about one order of magnitude at a resolution of 10m per pixel. These results could be further improved by training a CNN on a labeled large scale remote sensing dataset. Nevertheless, our results suffice for studying the expansion of human kind using satellite imagery and provide valuable information for designing optimal satellite sensors.ca
dc.format.extent70 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/162217
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Eduard Ribas Fernández, 2019
dc.rightscodi: GPL (c) Eduard Ribas Fernández, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationFotografia aèria
dc.subject.classificationImpacte ambiental
dc.subject.otherMachine learning
dc.subject.otherNeural networks (Computer science)
dc.subject.otherMaster's theses
dc.subject.otherAerial photography
dc.subject.otherEnvironmental impact
dc.titleMan-made structures detection from spaceca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
162217.pdf
Mida:
22.04 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
362.62 MB
Format:
ZIP file
Descripció: