Properties of single oxygen vacancies on a realistic (TiO2)(84) nanoparticle: a challenge for density functionals

dc.contributor.authorMorales García, Ángel
dc.contributor.authorLamiel Garcia, Josep Oriol
dc.contributor.authorValero Montero, Rosendo
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2020-06-11T08:04:54Z
dc.date.available2020-06-11T08:04:54Z
dc.date.issued2018-02-01
dc.date.updated2020-06-11T08:04:54Z
dc.description.abstractBased on all electron relativistic density functional theory calculations, the properties of single oxygen vacancies in TiO2 nanoparticles (NPs) have been obtained using a suitable representative model consisting of an octahedral (TiO2)(84) nano particle of similar to 3 nm size terminated with (101) facets. This nanoparticle can be safely considered at the onset of the so-called scalable regime where properties scale linearly with size toward bulklike limit, and hence results can be more directly compared to experiment. A set of reduced Ti84O167 nanoparticles are selected to investigate the geometric, energetic, and electronic properties by using PBE semilocal functional with three different amounts of Fock exchange: 0% (PBE), 12.5% (PBEx), and 25% (PBEO). In particular, using the PBEx hybrid functional, previously validated for bulk anatase and rutile, it is predicted that the highly (three)-coordinated oxygen atom, located in the subsurface, and the least coordinated one at top sites are energetically the most suitable candidate for generating the oxygen vacancy. The subsurface case is in line with conclusions from experiments carried out on (101) single crystal anatase surfaces. The electronic structure of the reduced particles suggests that these would have better photocatalytic activity than their stoichiometric counterparts. Nevertheless, several properties of reduced TiO2 NPs are strongly affected by the choice of the exchange-correlation functional, implying that, in absence of validation by comparison to experiment, predictions must be taken with caution.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec680240
dc.identifier.issn1932-7447
dc.identifier.urihttps://hdl.handle.net/2445/165142
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jpcc.7b11269
dc.relation.ispartofJournal of Physical Chemistry C, 2018, vol. 122, num. 4, p. 2413-2421
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD
dc.relation.urihttps://doi.org/10.1021/acs.jpcc.7b11269
dc.rights(c) American Chemical Society , 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationMinerals d'òxid
dc.subject.classificationDiòxid de titani
dc.subject.classificationNanopartícules
dc.subject.classificationTeoria del funcional de densitat
dc.subject.otherOxide minerals
dc.subject.otherTitanium dioxide
dc.subject.otherNanoparticles
dc.subject.otherDensity functionals
dc.titleProperties of single oxygen vacancies on a realistic (TiO2)(84) nanoparticle: a challenge for density functionals
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
680240.pdf
Mida:
2.4 MB
Format:
Adobe Portable Document Format