El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Epimorphism Surjectivity in Logic and Algebra

dc.contributor.advisorMoraschini, Tommaso
dc.contributor.advisorCarai, Luca
dc.contributor.authorKurtzhals, Miriam
dc.date.accessioned2024-07-22T13:06:59Z
dc.date.available2024-07-22T13:06:59Z
dc.date.issued2024-07
dc.descriptionTreballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2023-2024. Tutor: Luca Carai and Tommaso Moraschinica
dc.description.abstractAs the theorems we aim to prove require a variety of tools and background theory, we will start by recalling some basics of first-order logic (Section 2.1), model theory (Section 2.2), and universal algebra (Section 2.3). We will then continue presenting the protagonist of this thesis, the epimorphism surjectivity property, and making some easy but useful observations concerning this property (Section 2.4). Finally, we will establish a correspondence between the (weak) ES property in algebra and the (finite) Beth definability property in logic, providing motivation for the study of the ES property from a logical standpoint (Section 2.5)ca
dc.format.extent81 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/214663
dc.language.isoengca
dc.rightscc by-nc-nd (c) Kurtzhals, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Pure and Applied Logic / Lògica Pura i aplicada
dc.subject.classificationLògica
dc.subject.classificationÀlgebra universal
dc.subject.classificationCategories (Matemàtica)
dc.subject.classificationTreballs de fi de màster
dc.subject.otherLogic
dc.subject.otherUniversal algebra
dc.subject.otherCategories (Mathematics)
dc.subject.otherMaster's thesis
dc.titleEpimorphism Surjectivity in Logic and Algebraca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM_Kurtzhals Miriam.pdf
Mida:
653.59 KB
Format:
Adobe Portable Document Format
Descripció: