Broadband Dynamic Polarization Conversion in Optomechanical Metasurfaces

dc.contributor.authorZanotto, Simone
dc.contributor.authorColombano, Martín F.
dc.contributor.authorNavarro Urrios, Daniel
dc.contributor.authorBiasiol, Giorgio
dc.contributor.authorSotomayor Torres, Clivia M.
dc.contributor.authorTredicucci, A.
dc.contributor.authorPitanti, Alessandro
dc.date.accessioned2021-03-24T14:34:14Z
dc.date.available2021-03-24T14:34:14Z
dc.date.issued2020-01-10
dc.date.updated2021-03-24T14:34:14Z
dc.description.abstractArtificial photonic materials, nanofabricated through wavelength-scale engineering, have shown astounding and promising results in harnessing, tuning, and shaping photonic beams. Metamaterials have proven to be often outperforming the natural materials they take inspiration from. In particular, metallic chiral metasurfaces have demonstrated large circular and linear dichroism of light which can be used, for example, for probing different enantiomers of biological molecules. Moreover, the precise control, through designs on demand, of the output polarization state of light impinging on a metasurface, makes this kind of structures particularly relevant for polarization-based telecommunication protocols. The reduced scale of the metasurfaces makes them also appealing for integration with nanomechanical elements, adding new dynamical features to their otherwise static or quasi-static polarization properties. To this end we designed, fabricated and characterized an all-dielectric metasurface on a suspended nanomembrane. Actuating the membrane mechanical motion, we show how the metasurface reflectance response can be modified, according to the spectral region of operation, with a corresponding intensity modulation or polarization conversion. The broad mechanical resonance at atmospheric pressure, centered at about 400 kHz, makes the metasurfaces structure suitable for high-frequency operation, mainly limited by the piezo-actuator controlling the mechanical displacement, which in our experiment reached modulation frequencies exceeding 1.3 MHz.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec695244
dc.identifier.issn2296-424X
dc.identifier.urihttps://hdl.handle.net/2445/175683
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fphy.2019.00231
dc.relation.ispartofFrontiers In Physics, 2020, vol. 7
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/713450/EU//PHENOMEN
dc.relation.urihttps://doi.org/10.3389/fphy.2019.00231
dc.rightscc-by (c) Zanotto, Simone et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationNanociència
dc.subject.classificationPolarització (Física nuclear)
dc.subject.otherNanoscience
dc.subject.otherPolarization (Nuclear physics)
dc.titleBroadband Dynamic Polarization Conversion in Optomechanical Metasurfaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
695244.pdf
Mida:
2.95 MB
Format:
Adobe Portable Document Format