Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Benarroch, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222370

Tensor Networks for Quantum-Inspired Simulations

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Quantum algorithms have the potential to accelerate computation and reduce memory requirements on advanced quantum computers. However, current hardware limitations hinder their application to complex problems. In this work, we investigate a promising approach that bypasses the need for quantum hardware by leveraging tensor networks to simulate quantum algorithms on classical computers. We assess the performance of quantum-inspired simulators relative to classical methods in terms of memory, runtime, and accuracy. Our results demonstrate that quantum-inspired simulators can surpass their classical counterparts in accuracy while using less than half the memory. Additionally, we show that operators based on higher-precision approximations can reduce errors in quantum-inspired simulations without compromising memory requirements. Finally, we explore the capability of quantum-inspired simulators to address memory-intensive problems beyond the reach of conventional algorithms.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutors: Bruno Julià-Díaz, Artur García-Saez, Stefano Carignano

Citació

Citació

BENARROCH JEDLICKI, Jack. Tensor Networks for Quantum-Inspired Simulations. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/222370]

Exportar metadades

JSON - METS

Compartir registre