Clogging transition of many-particle systems flowing through bottlenecks

dc.contributor.authorZuriguel, Iker
dc.contributor.authorParisi, D.
dc.contributor.authorHidalgo, R. C.
dc.contributor.authorLozano, Celia
dc.contributor.authorJanda, Alvaro
dc.contributor.authorGago, Paula Alejandra
dc.contributor.authorPeralta, J. P.
dc.contributor.authorFerrer, Luis Miguel
dc.contributor.authorPugnaloni, Luis Ariel
dc.contributor.authorClement, Eric
dc.contributor.authorMaza, Diego
dc.contributor.authorPagonabarraga Mora, Ignacio
dc.contributor.authorGarcimartin, Ángel
dc.date.accessioned2018-11-12T18:38:06Z
dc.date.available2018-11-12T18:38:06Z
dc.date.issued2014
dc.date.updated2018-11-12T18:38:07Z
dc.description.abstractWhen a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec645072
dc.identifier.issn2045-2322
dc.identifier.pmid25471601
dc.identifier.urihttps://hdl.handle.net/2445/126027
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/srep07324
dc.relation.ispartofScientific Reports, 2014, vol. 4, p. 7324
dc.relation.urihttps://doi.org/10.1038/srep07324
dc.rightscc-by (c) Zuriguel, I. et al., 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationModels moleculars
dc.subject.classificationSimulació per ordinador
dc.subject.classificationCol·loides
dc.subject.otherMolecular models
dc.subject.otherComputer simulation
dc.subject.otherColloids
dc.titleClogging transition of many-particle systems flowing through bottlenecks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
645072.pdf
Mida:
2.64 MB
Format:
Adobe Portable Document Format