Si nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition

dc.contributor.authorPerálvarez Barrera, Mariano Josécat
dc.contributor.authorBarreto, Jorgecat
dc.contributor.authorCarreras, Josepcat
dc.contributor.authorMorales, A. (Ángel)cat
dc.contributor.authorNavarro Urrios, Danielcat
dc.contributor.authorLebour, Youcefcat
dc.contributor.authorDomínguez, Carlos (Domínguez Horna)cat
dc.contributor.authorGarrido Fernández, Blascat
dc.date.accessioned2011-04-07T14:04:34Z
dc.date.available2011-04-07T14:04:34Z
dc.date.issued2009
dc.descriptionDept. Electrònica
dc.description.abstractAn in-depth study of the physical and electrical properties of Si-nanocrystal-based MOSLEDs is presented. The active layers were fabricated with different concentrations of Si by both ion implantation and plasma-enhanced chemical vapour deposition. Devices fabricated by ion implantation exhibit a combination of direct current and field-effect luminescence under a bipolar pulsed excitation. The onset of the emission decreases with the Si excess from 6 to 3 V. The direct current emission is attributed to impact ionization and is associated with the reasonably high current levels observed in current–voltage measurements. This behaviour is in good agreement with transmission electron microscopy images that revealed a continuous and uniform Si nanocrystal distribution. The emission power efficiency is relatively low, ~10−3%, and the emission intensity exhibits fast degradation rates, as revealed from accelerated ageing experiments. Devices fabricated by chemical deposition only exhibit field-effect luminescence, whose onset decreases with the Si excess from 20 to 6 V. The absence of the continuous emission is explained by the observation of a 5 nm region free of nanocrystals, which strongly reduces the direct current through the gate. The main benefit of having this nanocrystal-free region is that tunnelling current flow assisted by nanocrystals is blocked by the SiO2 stack so that power consumption is strongly reduced, which in return increases the device power efficiency up to 0.1%. In addition, the accelerated ageing studies reveal a 50% degradation rate reduction as compared to implanted structures.
dc.format.extent33 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec576835
dc.identifier.issn0957-4484
dc.identifier.urihttps://hdl.handle.net/2445/17523
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.relation.isformatofVersió postprint del document publicat a http://dx.doi.org/10.1088/0957-4484/20/40/405201cat
dc.relation.ispartofNanotechnology, 2009, vol. 20, núm. 40, p. 405201-1-405201-10
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/224312/EU//HELIOS
dc.relation.urihttp://dx.doi.org/10.1088/0957-4484/20/40/405201
dc.rights(c) IOP Publishing, 2009
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationElectrònicacat
dc.subject.classificationÒpticacat
dc.subject.classificationÒptica quànticacat
dc.subject.classificationMatèria condensadacat
dc.subject.otherElectronicseng
dc.subject.otherOpticseng
dc.subject.otherQuantum opticseng
dc.subject.otherCondensed mattereng
dc.titleSi nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour depositioneng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
576835.pdf
Mida:
2.23 MB
Format:
Adobe Portable Document Format