Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Abel Serrat i Castella, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202220

Study of stochastic differential equations driven by fractional brownian motion

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] In this thesis we study and develop in detail the research paper Differential equations driven by fractional brownian motion by D. Nualart and A. Rascanu, 7]. It is a landmark paper in which the authors prove the existence and uniqueness of solution to stochastic differential equations driven by fractional Brownian motion of Hurst parameter $H \in(1 / 2,1)$. Moreover, they show that, under additional hypothesis, the solution has finite moments of all orders. They take a path-by-path approach given the Hölder-continuity property of the paths of the fractional Brownian motion. On our part, after a gentle introduction to the fractional integrals and derivatives and to the generalized Stieltjes integral, we fully develop the results and proofs of this paper. Not only that but we insert our own remarks and comment on the obtained results regarding the measurability of the solution. As a result, this thesis could be considered a companion paper intended to the reader interested in this important result but not versed in the foundations of stochastic differential equations.

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: David Márquez

Citació

Citació

SERRAT I CASTELLA, Abel. Study of stochastic differential equations driven by fractional brownian motion. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202220]

Exportar metadades

JSON - METS

Compartir registre