Singlet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields

dc.contributor.authorWohlgenannt, M.
dc.contributor.authorFlatté, Michael E.
dc.contributor.authorHarmon, Nicholas
dc.contributor.authorWang, Fujian
dc.contributor.authorKent, A. D.
dc.contributor.authorMacià Bros, Ferran
dc.date.accessioned2020-05-12T15:48:57Z
dc.date.available2020-05-12T15:48:57Z
dc.date.issued2015
dc.date.updated2020-05-12T15:48:57Z
dc.description.abstractUntil recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaronpair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec699916
dc.identifier.issn1364-503X
dc.identifier.urihttps://hdl.handle.net/2445/159774
dc.language.isoeng
dc.publisherThe Royal Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1098/rsta.2014.0326
dc.relation.ispartofPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, vol. 373, p. 20140326
dc.relation.urihttps://doi.org/10.1098/rsta.2014.0326
dc.rights(c) Wohlgenannt, M. et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationEspintrònica
dc.subject.classificationFísica de l'estat sòlid
dc.subject.classificationNanotecnologia
dc.subject.classificationFerromagnetisme
dc.subject.otherSpintronics
dc.subject.otherSolid state physics
dc.subject.otherNanotechnology
dc.subject.otherFerromagnetism
dc.titleSinglet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
699916.pdf
Mida:
713.67 KB
Format:
Adobe Portable Document Format