Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Melia, Umberto et al., 2015
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/109664

Prediction of Nociceptive Responses during Sedation by Linear and Non-Linear Measures of EEG Signals in High Frequencies

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS). Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.

Citació

Citació

MELIA, Umberto, VALLVERDÚ, Montserrat, BORRAT, Xavier, VALENCIA, José fernando, JOSPIN, Mathieu, JENSEN, Erik w., GAMBÚS CERRILLO, Pedro luis, CAMINAL, Pere. Prediction of Nociceptive Responses during Sedation by Linear and Non-Linear Measures of EEG Signals in High Frequencies. _PLoS One_. 2015. Vol. 10, núm. 4, pàgs. e0123464. [consulta: 27 de gener de 2026]. ISSN: 1932-6203. [Disponible a: https://hdl.handle.net/2445/109664]

Exportar metadades

JSON - METS

Compartir registre