Learning form Nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.

dc.contributor.authorMartínez Boubeta, José Carlos
dc.contributor.authorSimeonidis, Konstantinos
dc.contributor.authorMakridis, Antonios
dc.contributor.authorAngelakeris, Makis
dc.contributor.authorIglesias, Òscar
dc.contributor.authorGuardia, Pablo
dc.contributor.authorCabot i Codina, Andreu
dc.contributor.authorYedra Cardona, Lluís
dc.contributor.authorEstradé Albiol, Sònia
dc.contributor.authorPeiró Martínez, Francisca
dc.contributor.authorSaghi, Zineb
dc.contributor.authorMidgley, Paul A.
dc.contributor.authorConde-Leborán, Iván
dc.contributor.authorSerantes, David
dc.contributor.authorBaldomir, Daniel
dc.date.accessioned2014-01-07T12:55:59Z
dc.date.available2014-01-07T12:55:59Z
dc.date.issued2013-04-11
dc.date.updated2014-01-07T12:55:59Z
dc.description.abstractThe performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec620505
dc.identifier.issn2045-2322
dc.identifier.pmid23576006
dc.identifier.urihttps://hdl.handle.net/2445/48703
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1038/srep01652
dc.relation.ispartofScientific Reports, 2013, vol. 3, num. 1652, p. 1652-1-1652-8
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/291522/EU//3DIMAGE
dc.relation.urihttp://dx.doi.org/10.1038/srep01652
dc.rightscc-by-nc-nd (c) Martinez-Boubeta, Carlos et al., 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationCàncer
dc.subject.classificationNanotecnologia
dc.subject.classificationNanopartícules
dc.subject.classificationPropietats magnètiques
dc.subject.classificationMaterials magnètics
dc.subject.classificationCalor
dc.subject.classificationTerapèutica
dc.subject.otherCancer
dc.subject.otherNanotechnology
dc.subject.otherNanoparticles
dc.subject.otherMagnetic properties
dc.subject.otherMagnetic materials
dc.subject.otherHeat
dc.subject.otherTherapeutics
dc.titleLearning form Nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
620505.pdf
Mida:
3.35 MB
Format:
Adobe Portable Document Format