Big data analysis applied to EEL spectroscopy

dc.contributor.advisorEstradé Albiol, Sònia
dc.contributor.advisorBlanco Portals, Javier
dc.contributor.authorSospedra Ramírez, Joan
dc.date.accessioned2018-10-10T13:47:16Z
dc.date.available2018-10-10T13:47:16Z
dc.date.issued2018-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutors: Sonia Estradé Albiol, Javier Blanco Portalsca
dc.description.abstractIn order to characterize an unknown sample, big data and machine learning methods are proposed. An electron energy loss (EEL) spectrum image obtained in the transmission electron microscope is analyzed. Applying principal component analysis (PCA) to image EEL spectra, the noise present in the raw data can be discarded, and comparing with existing datasets and alternatively through clustering analysis, the presence of vanadium and oxygen in the sample over a substrate with lanthanum and oxygen can be recognizedca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/125267
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Sospedra, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electronscat
dc.subject.classificationDades massivescat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherElectron energy loss spectroscopyeng
dc.subject.otherBig dataeng
dc.subject.otherBachelor's theseseng
dc.titleBig data analysis applied to EEL spectroscopyeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Sospedra Ramírez Joan.pdf
Mida:
711.64 KB
Format:
Adobe Portable Document Format
Descripció: