Effects of Deposition Temperature and Working Pressure on the Thermal and Nanomechanical Performances of Stoichiometric Cu3N: An Adaptable Material for Photovoltaic Applications

dc.contributor.authorRodríguez-Tapiador, M.I.
dc.contributor.authorJiménez-Suárez, A.
dc.contributor.authorLama, A.
dc.contributor.authorGordillo, N.
dc.contributor.authorAsensi López, José Miguel
dc.contributor.authordel Rosario, G.
dc.contributor.authorMerino, J.
dc.contributor.authorBertomeu i Balagueró, Joan
dc.contributor.authorAgarwal, A.
dc.contributor.authorFernández, S.
dc.date.accessioned2025-01-24T18:49:59Z
dc.date.available2025-01-24T18:49:59Z
dc.date.issued2023-11-15
dc.date.updated2025-01-24T18:49:59Z
dc.description.abstractThe pursuit of efficient, profitable, and ecofriendly materials has defined solar cell research from its inception to today. Some materials, such as copper nitride (Cu3N), show great promise for promoting sustainable solar technologies. This study employed reactive radio-frequency magnetron sputtering using a pure nitrogen environment to fabricate quality Cu3N thin films to evaluate how both temperature and gas working pressure affect their solar absorption capabilities. Several characterization techniques, including X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), Raman spectroscopy, scanning electron microscopy (SEM), nanoindentation, and photothermal deflection spectroscopy (PDS), were used to determine the main properties of the thin films. The results indicated that, at room temperature, it is possible to obtain a material that is close to stoichiometric Cu3N material (Cu/N ratio ≈ 3) with (100) preferred orientation, which was lost as the substrate temperature increases, demonstrating a clear influence of this parameter on the film structure attributed to nitrogen re-emission at higher temperatures. Raman microscopy confirmed the formation of Cu-N bonds within the 628–637 cm−1 range. In addition, the temperature and the working pressure significantly also influence the film hardness and the grain size, affecting the elastic modulus. Finally, the optical properties revealed suitable properties at lower temperatures, including bandgap values, refractive index, and Urbach energy. These findings underscore the potential of Cu3N thin films in solar energy due to their advantageous properties and resilience against defects. This research paves the way for future advancements in efficient and sustainable solar technologies.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec740397
dc.identifier.issn2079-4991
dc.identifier.urihttps://hdl.handle.net/2445/217984
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/nano13222950
dc.relation.ispartofNanomaterials, 2023, vol. 13, num.22
dc.relation.urihttps://doi.org/10.3390/nano13222950
dc.rightscc-by (c) Rodríguez-Tapiador, M.I. et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationPel·lícules fines
dc.subject.classificationCoure
dc.subject.classificationÒptica
dc.subject.otherThin films
dc.subject.otherCopper
dc.subject.otherOptics
dc.titleEffects of Deposition Temperature and Working Pressure on the Thermal and Nanomechanical Performances of Stoichiometric Cu3N: An Adaptable Material for Photovoltaic Applications
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
835197.pdf
Mida:
3.09 MB
Format:
Adobe Portable Document Format