Machine Learning representation of loss of eye regularity in a drosophila neurodegenerative model

dc.contributor.authorDiez-Hermano, Sergio
dc.contributor.authorGanfornina, Maria D.
dc.contributor.authorVegas Lozano, Esteban
dc.contributor.authorSanchez, Diego
dc.date.accessioned2020-07-02T11:26:13Z
dc.date.available2020-07-02T11:26:13Z
dc.date.issued2020-06-04
dc.date.updated2020-07-02T11:26:13Z
dc.description.abstractThe fruit fly compound eye is a premier experimental system for modeling human neurodegenerative diseases. The disruption of the retinal geometry has been historically assessed using time-consuming and poorly reliable techniques such as histology or pseudopupil manual counting. Recent semiautomated quantification approaches rely either on manual region-of-interest delimitation or engineered features to estimate the extent of degeneration. This work presents a fully automated classification pipeline of bright-field images based on orientated gradient descriptors and machine learning techniques. An initial region-of-interest extraction is performed, applying morphological kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms are trained on these regions (support vector machine, decision trees, random forest, and convolutional neural network), and their performance is evaluated on independent, unseen datasets. The combinations of oriented gradient C gaussian kernel Support Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best results overall. The proposed method provides a robust quantification framework that can be generalized to address the loss of regularity in biological patterns similar to the Drosophila eye surface and speeds up the processing of large sample batches
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec702427
dc.identifier.issn1662-4548
dc.identifier.pmid32581679
dc.identifier.urihttps://hdl.handle.net/2445/167381
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fnins.2020.00516
dc.relation.ispartofFrontiers in Neuroscience, 2020, vol. 14, p. 516
dc.relation.urihttps://doi.org/10.3389/fnins.2020.00516
dc.rightscc-by (c) Diez-Hermano, Sergio et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationDrosòfila melanogaster
dc.subject.classificationMalalties neurodegeneratives
dc.subject.classificationVisió
dc.subject.otherDrosophila melanogaster
dc.subject.otherNeurodegenerative Diseases
dc.subject.otherVisión
dc.titleMachine Learning representation of loss of eye regularity in a drosophila neurodegenerative model
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
702427.pdf
Mida:
5.75 MB
Format:
Adobe Portable Document Format