Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Borrell Araunabeña, Laia, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/178380

Machine learning approaches for the study of AD with brain MRI data

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The use of automated or semi-automated approaches based on imaging data has been suggested to support the diagnoses of some diseases. In this context, Machine Learning (ML) appears as a useful emerging tool for this purpose, allowing from feature extraction to automatic classification. Alzheimer Disease (AD) and Frontotemporal Dementia (FTD) are two common and prevalent forms of early-onset dementia with different, but partly overlapping, symptoms and brain patterns of atrophy. Because of the similarities, there is a need to establish an accurate diagnosis and to obtain good markers for prognosis. This work combines both supervised and unsupervised ML algorithms to classify AD and FTD. The data used consisted of gray matter volumes and cortical thicknesses (CTh) extracted from 3TT1 MRI of 44 healthy controls (HC, age: 57.8±5.4 years), 53 Early-Onset Alzheimer Disease patients (EOAD, age: 59.4±4.4 years) and 64 FTD patients (FTD, age: 64.4±8.8 years). A principal component analysis (PCA) of all volumes and thicknesses was performed and a number of principal components (PC) that accumulated at least 80% of the data variance were entered into a Support Vector Machine (SVM). Overall performance was assessed using a 5-fold crossvalidation...

Descripció

Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2020-2021. Directors: Roser Sala Llonch, Agnès Pérez Millan

Citació

Citació

BORRELL ARAUNABEÑA, Laia. Machine learning approaches for the study of AD with brain MRI data. [consulta: 28 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/178380]

Exportar metadades

JSON - METS

Compartir registre