Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/178380
Machine learning approaches for the study of AD with brain MRI data
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The use of automated or semi-automated approaches based on imaging data has been suggested to support the diagnoses of some diseases. In this context, Machine Learning (ML) appears as a
useful emerging tool for this purpose, allowing from feature extraction to automatic classification.
Alzheimer Disease (AD) and Frontotemporal Dementia (FTD) are two common and prevalent forms
of early-onset dementia with different, but partly overlapping, symptoms and brain patterns of
atrophy. Because of the similarities, there is a need to establish an accurate diagnosis and to obtain
good markers for prognosis. This work combines both supervised and unsupervised ML algorithms
to classify AD and FTD.
The data used consisted of gray matter volumes and cortical thicknesses (CTh) extracted from 3TT1
MRI of 44 healthy controls (HC, age: 57.8±5.4 years), 53 Early-Onset Alzheimer Disease
patients (EOAD, age: 59.4±4.4 years) and 64 FTD patients (FTD, age: 64.4±8.8 years). A
principal component analysis (PCA) of all volumes and thicknesses was performed and a number
of principal components (PC) that accumulated at least 80% of the data variance were entered into
a Support Vector Machine (SVM). Overall performance was assessed using a 5-fold crossvalidation...
Descripció
Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2020-2021. Directors: Roser Sala Llonch, Agnès Pérez Millan
Matèries (anglès)
Citació
Citació
BORRELL ARAUNABEÑA, Laia. Machine learning approaches for the study of AD with brain MRI data. [consulta: 28 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/178380]