El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Sempera Camín, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/214665

Rational and Delta expansions of the Nilpotent Minimum Logic

Títol de la revista

ISSN de la revista

Títol del volum

Resum

[eng] The aim of this thesis is to study some expansions of the Nilpotent minimum logic (denoted by NML), focusing on their lattices of axiomatic and finitary extensions and, additionally, exploring the structural completeness of these logics, alongside their variants (active structural completeness, passive structural completeness, ... ). The project includes research about the rational Nilpotent minimum logic (designated by RNML), which is obtained by adding rational constants to the language of NML. Moreover, we also study the Δ-core fuzzy logic obtained by expanding the language of NML with the Baaz Delta connective and examine the impact of the incorporation of rational constants to the language of this logic (which is equivalent to the addition of the Baaz Delta connective to RNML). The thesis culminates with the corresponding analysis of an extension of the later logic which is obtained by introducing bookkeeping axioms for the Δ operator, motivated by the aim for the algebra of constants to form a subalgebra. In the project, through comparative analysis, the differences and similarities between the lattices of axiomatic and finitary extensions among the previously mentioned expansions are evaluated, as well as how the structural completeness results obtained may vary from one logic to another.

Descripció

Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 202x-202x. Tutor: xxx

Citació

Citació

SEMPERE CAMÍN, Paula. Rational and Delta expansions of the Nilpotent Minimum Logic. [consulta: 26 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/214665]

Exportar metadades

JSON - METS

Compartir registre