Room temperature methane capture and activation by Ni clusters supported on TiC(001): effects of metal-carbide interactions on the cleavage of the C-H bond

dc.contributor.authorPrats Garcia, Hèctor
dc.contributor.authorGutiérrez, Ramón A.
dc.contributor.authorPiñero Vargas, Juan José
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorBromley, Stefan Thomas
dc.contributor.authorRamírez, Pedro J.
dc.contributor.authorRodríguez, José A.
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2020-06-16T07:06:26Z
dc.date.available2020-06-16T07:06:26Z
dc.date.issued2019-04-03
dc.date.updated2020-06-16T07:06:26Z
dc.description.abstractMethane is an extremely stable molecule, a major component of natural gas, and also one of the most potent greenhouse gases contributing to global warming. Consequently, the capture and activation of methane is a challenging and intensively studied topic. A major research goal is to find systems that can activate methane even at low temperature. Here, combining ultrahigh vacuum catalytic experiments followed by X-ray photoemission spectra and accurate density functional theory (DFT) based calculations, we show that small Ni clusters dispersed on the (001) surface of TiC are able to capture and dissociate methane at room temperature. Our DFT calculations reveal that two-dimensional Ni clusters are responsible of this chemical transformation, evidencing that the lability of the supported clusters appears to be a critical aspect in the strong adsorption of methane. A small energy barrier of 0.18 eV is predicted for CH4 dissociation into adsorbed methyl and hydrogen atom species. In addition, the calculated reaction free energy profile at 300 K and 1 atm of CH4 shows no effective energy barriers in the system. Comparing with other reported systems which activate methane at room temperature, including oxide and zeolite-based materials, indicates that a different chemistry takes place on our metal/carbide system. The discovery of a carbide-based surface able to activate methane at low temperatures paves the road for the design of new types of catalysts towards an efficient conversion of this hydrocarbon into other added-value chemicals, with implications in climate change mitigation.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec693332
dc.identifier.issn0002-7863
dc.identifier.urihttps://hdl.handle.net/2445/165741
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/jacs.8b13552
dc.relation.ispartofJournal of the American Chemical Society, 2019, vol. 141, num. 13, p. 5303-5313
dc.relation.urihttps://doi.org/10.1021/jacs.8b13552
dc.rights(c) American Chemical Society , 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationCarburs
dc.subject.classificationTitani
dc.subject.classificationTeoria del funcional de densitat
dc.subject.classificationHidrocarburs
dc.subject.otherCarbides
dc.subject.otherTitanium
dc.subject.otherDensity functionals
dc.subject.otherHydrocarbons
dc.titleRoom temperature methane capture and activation by Ni clusters supported on TiC(001): effects of metal-carbide interactions on the cleavage of the C-H bond
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
693332.pdf
Mida:
5.59 MB
Format:
Adobe Portable Document Format