The Tetragnatha kauaiensis genome sheds light on the origins of genomic novelty in spider

dc.contributor.authorCerca, José
dc.contributor.authorArmstrong, Ellie E.
dc.contributor.authorVizueta Moraga, Joel
dc.contributor.authorFernández, Rosa
dc.contributor.authorDimitrov, Dimitar
dc.contributor.authorPetersen, Bent
dc.contributor.authorProst, Stefan
dc.contributor.authorRozas Liras, Julio A.
dc.contributor.authorPetrov, Dmitri
dc.contributor.authorGillespie, Rosemary G.
dc.date.accessioned2023-03-21T17:38:16Z
dc.date.available2023-03-21T17:38:16Z
dc.date.issued2021-12-01
dc.date.updated2023-03-21T17:38:16Z
dc.description.abstractSpiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of ∼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (∼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec716186
dc.identifier.issn1759-6653
dc.identifier.urihttps://hdl.handle.net/2445/195746
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/gbe/evab262
dc.relation.ispartofGenome Biology and Evolution, 2021, vol. 13, num. 12, p. 1-17
dc.relation.urihttps://doi.org/10.1093/gbe/evab262
dc.rightscc-by-nc (c) Cerca, José et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationAranyes
dc.subject.classificationArtròpodes
dc.subject.classificationHawaii
dc.subject.otherSpiders
dc.subject.otherArthropoda
dc.subject.otherHawai
dc.titleThe Tetragnatha kauaiensis genome sheds light on the origins of genomic novelty in spider
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
716186.pdf
Mida:
1.4 MB
Format:
Adobe Portable Document Format