Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Aleksei Kulikov et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222680

A monotonicity theorem for subharmonic functions on manifolds

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We provide a sharp monotonicity theorem about the distribution of subharmonic functions on manifolds, which can be regarded as a new, measure theoretic form of the uncertainty principle. As an illustration of the scope of this result, we deduce contractivity estimates for analytic functions on the Riemann sphere, the complex plane and the Poincaré disc, with a complete description of the extremal functions, hence providing a unified and illuminating perspective of a number of results and conjectures on this subject, in particular on the Wehrl entropy conjecture by Lieb and Solovej. In this connection, we completely prove that conjecture for $SU$(2), by showing that the corresponding extremals are only the coherent states. Also, we show that the above (global) estimates admit a local counterpart and in all cases we characterize also the extremal subsets, among those of fixed assigned measure.

Citació

Citació

KULIKOV, Aleksei, NICOLA, Fabio, ORTEGA CERDÀ, Joaquim, TILLI, Paolo. A monotonicity theorem for subharmonic functions on manifolds. _Advances in Mathematics_. 2025. Vol. 479. [consulta: 21 de gener de 2026]. ISSN: 0001-8708. [Disponible a: https://hdl.handle.net/2445/222680]

Exportar metadades

JSON - METS

Compartir registre