Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222680
A monotonicity theorem for subharmonic functions on manifolds
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We provide a sharp monotonicity theorem about the distribution of subharmonic functions on manifolds, which can be regarded as a new, measure theoretic form of the uncertainty principle. As an illustration of the scope of this result, we deduce contractivity estimates for analytic functions on the Riemann sphere, the complex plane and the Poincaré disc, with a complete description of the extremal functions, hence providing a unified and illuminating perspective of a number of results and conjectures on this subject, in particular on the Wehrl entropy conjecture by Lieb and Solovej. In this connection, we completely prove that conjecture for $SU$(2), by showing that the corresponding extremals are only the coherent states. Also, we show that the above (global) estimates admit a local counterpart and in all cases we characterize also the extremal subsets, among those of fixed assigned measure.
Matèries (anglès)
Citació
Citació
KULIKOV, Aleksei, NICOLA, Fabio, ORTEGA CERDÀ, Joaquim, TILLI, Paolo. A monotonicity theorem for subharmonic functions on manifolds. _Advances in Mathematics_. 2025. Vol. 479. [consulta: 21 de gener de 2026]. ISSN: 0001-8708. [Disponible a: https://hdl.handle.net/2445/222680]