Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation
| dc.contributor.author | Osuala, Richard | |
| dc.contributor.author | Joshi, Smriti | |
| dc.contributor.author | Tsirikoglou, Apostolia | |
| dc.contributor.author | Garrucho, Lidia | |
| dc.contributor.author | López Pinaya, Walter Hugo | |
| dc.contributor.author | Díaz, Oliver | |
| dc.contributor.author | Lekadir, Karim, 1977- | |
| dc.date.accessioned | 2025-03-25T10:21:23Z | |
| dc.date.available | 2025-03-25T10:21:23Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccu- mulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis. | ca |
| dc.format.extent | 12 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/219974 | |
| dc.language.iso | eng | ca |
| dc.publisher | SPIE | ca |
| dc.relation.isformatof | Versió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3006961 | |
| dc.relation.ispartof | Comunicació a: Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129260Y (2 April 2024) | |
| dc.relation.ispartofseries | Proceedings SPIE | ca |
| dc.relation.ispartofseries | 12926 | ca |
| dc.relation.uri | https://doi.org/10.1117/12.3006961 | |
| dc.rights | (c) SPIE, 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.source | Comunicacions a congressos (Matemàtiques i Informàtica) | |
| dc.subject.classification | Càncer de mama | |
| dc.subject.classification | Aprenentatge automàtic | |
| dc.subject.classification | Substàncies de contrast | ca |
| dc.subject.other | Breast cancer | |
| dc.subject.other | Machine learning | |
| dc.subject.other | Contrast media (Diagnostic imaging) | en |
| dc.title | Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation | ca |
| dc.type | info:eu-repo/semantics/conferenceObject | ca |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- SPIE_4 Osuala SPIE Medical Imaging 2024.pdf
- Mida:
- 7.74 MB
- Format:
- Adobe Portable Document Format
- Descripció: