Retaining principal components for discrete variables

dc.contributor.authorSolanas Pérez, Antonio
dc.contributor.authorManolov, Rumen
dc.contributor.authorLeiva Ureña, David
dc.contributor.authorRichard's, María Marta
dc.date.accessioned2012-07-19T11:13:52Z
dc.date.available2012-07-19T11:13:52Z
dc.date.issued2011
dc.date.updated2012-07-19T11:13:52Z
dc.description.abstractThe present study discusses retention criteria for principal components analysis (PCA) applied to Likert scale items typical in psychological questionnaires. The main aim is to recommend applied researchers to restrain from relying only on the eigenvalue-than-one criterion; alternative procedures are suggested for adjusting for sampling error. An additional objective is to add evidence on the consequences of applying this rule when PCA is used with discrete variables. The experimental conditions were studied by means of Monte Carlo sampling including several sample sizes, different number of variables and answer alternatives, and four non-normal distributions. The results suggest that even when all the items and thus the underlying dimensions are independent, eigenvalues greater than one are frequent and they can explain up to 80% of the variance in data, meeting the empirical criterion. The consequences of using Kaiser"s rule are illustrated with a clinical psychology example. The size of the eigenvalues resulted to be a function of the sample size and the number of variables, which is also the case for parallel analysis as previous research shows. To enhance the application of alternative criteria, an R package was developed for deciding the number of principal components to retain by means of confidence intervals constructed about the eigenvalues corresponding to lack of relationship between discrete variables.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec600268
dc.identifier.issn0066-5126
dc.identifier.urihttps://hdl.handle.net/2445/28842
dc.language.isoeng
dc.publisherUniversitat de Barcelona
dc.relation.isformatofReproducció del document publicat a: http://www.raco.cat/index.php/AnuarioPsicologia/article/view/249847
dc.relation.ispartofAnuario de Psicología, 2011, vol. 41, num. 1-3, p. 33-50
dc.rights(c) Universitat de Barcelona, 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Psicologia Social i Psicologia Quantitativa)
dc.subject.classificationMostreig (Estadística)
dc.subject.classificationAnàlisi de variància
dc.subject.classificationEstudi de casos
dc.subject.classificationPsicologia
dc.subject.otherSampling (Statistics)
dc.subject.otherAnalysis of variance
dc.subject.otherCase studies
dc.subject.otherPsychology
dc.titleRetaining principal components for discrete variableseng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
600268.pdf
Mida:
419.77 KB
Format:
Adobe Portable Document Format