Dynamical mechanism behind ghosts unveiled in a map complexification

dc.contributor.authorCanela Sánchez, Jordi
dc.contributor.authorAlsedà i Soler, Lluís
dc.contributor.authorFagella Rabionet, Núria
dc.contributor.authorSardanyés i Cayuela, Josep
dc.date.accessioned2022-01-18T08:39:35Z
dc.date.available2024-01-01T06:10:18Z
dc.date.issued2022-01-01
dc.date.updated2022-01-18T08:39:36Z
dc.description.abstractComplex systems such as ecosystems, electronic circuits, lasers or chemical reactions can be modelled by dynamical systems which typically experience bifurcations. Transients typically suffer extremely long delays at the vicinity of bifurcations and it is also known that these transients follow scaling laws as the bifurcation parameter gets closer the bifurcation value in deterministic systems. The mechanisms involved in local bifurca- tions are well-known. However, for saddle-node bifurcations, the relevant dynamics after the bifurcation occur in the complex phase space. Hence, the mechanism responsible for the delays and the associated inverse-square root scaling law for this bifurcation can be better understood by looking at the dynamics in the complex space. We follow this approach and complexify a simple ecological system undergoing a saddle-node bifurcation. The discrete model describes a biological system with facilitation (cooperation) under habitat destruction for species with non-overlapping generations. We study the complex (as opposed to real) dynamics once the bifurcation has occurred. We identify the fundamental mechanism causing these long delays (called ghosts), given by two repellers in the complex space. Such repellers appear to be extremely close to the real line, thus forming a nar- row channel close to the two new fixed points and responsible for the slow passage of the orbits, which remains tangible in the real numbers phase space. We analytically provide the relation between the inverse square-root scaling law and the multipliers of these repellers. We finally prove that the same phenomenon occurs for more general i.e., non-necessarily polynomial, models.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec717426
dc.identifier.issn0960-0779
dc.identifier.urihttps://hdl.handle.net/2445/182410
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.chaos.2021.111780
dc.relation.ispartofChaos Solitons & Fractals, 2022, vol. 156
dc.relation.urihttps://doi.org/10.1016/j.chaos.2021.111780
dc.rightscc-by-nc-nd (c) Elsevier Ltd, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationTeoria de la bifurcació
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherBifurcation theory
dc.titleDynamical mechanism behind ghosts unveiled in a map complexification
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
717426.pdf
Mida:
8.43 MB
Format:
Adobe Portable Document Format