Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Sean cox et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217445

Forcing axioms and the complexity of non-stationary ideals

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on $\omega_2$ and its restrictions to certain cofinalities. Our main result shows that the strengthening $\mathrm{MM}^{++}$of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on $\omega_2$ to sets of ordinals of countable cofinality is $\Delta_1$-definable by formulas with parameters in $\mathrm{H}\left(\omega_3\right)$. The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on $\omega_2$ and strong forcing axioms that are compatible with CH. Finally, we answer a question of S . Friedman, Wu and Zdomskyy by showing that the $\Delta_1$-definability of the non-stationary ideal on $\omega_2$ is compatible with arbitrary large values of the continuum function at $\omega_2$.

Matèries (anglès)

Citació

Citació

COX, Sean, LÜCKE, Philipp. Forcing axioms and the complexity of non-stationary ideals. _Monatshefte für Mathematik_. 2022. Vol. 199, núm. 1, pàgs. 45-84. [consulta: 22 de gener de 2026]. ISSN: 0026-9255. [Disponible a: https://hdl.handle.net/2445/217445]

Exportar metadades

JSON - METS

Compartir registre