The univalent Bloch-Landau constant, harmonic symmetry and conformal glueing

dc.contributor.authorCarroll, Tom
dc.contributor.authorOrtega Cerdà, Joaquim
dc.date.accessioned2013-05-24T07:59:27Z
dc.date.available2013-05-24T07:59:27Z
dc.date.issued2009-05-29
dc.date.updated2013-05-24T07:59:28Z
dc.description.abstractBy modifying a domain first suggested by Ruth Goodman in 1935 and by exploiting the explicit solution by Fedorov of the Polyá-Chebotarev problem in the case of four symmetrically placed points, an improved upper bound for the univalent Bloch-Landau constant is obtained. The domain that leads to this improved bound takes the form of a disk from which some arcs are removed in such a way that the resulting simply connected domain is harmonically symmetric in each arc with respect to the origin. The existence of domains of this type is established, using techniques from conformal welding, and some general properties of harmonically symmetric arcs in this setting are established.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec567422
dc.identifier.issn0021-7824
dc.identifier.urihttps://hdl.handle.net/2445/43743
dc.language.isoeng
dc.publisherElsevier Masson
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.matpur.2009.05.008
dc.relation.ispartofJournal de Mathématiques Pures et Appliquées, 2009, vol. 92, num. 4, p. 396-406
dc.relation.urihttp://dx.doi.org/10.1016/j.matpur.2009.05.008
dc.rights(c) Elsevier Masson, 2009
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria geomètrica de funcions
dc.subject.classificationFuncions de variables complexes
dc.subject.otherGeometric function theory
dc.subject.otherFunctions of complex variables
dc.titleThe univalent Bloch-Landau constant, harmonic symmetry and conformal glueing
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
567422.pdf
Mida:
479.58 KB
Format:
Adobe Portable Document Format