El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Solving the Quantum Many-Body Lindbladian Learning Problem With Neural Differential Equations

dc.contributor.advisorHeightman, Timothy
dc.contributor.advisorJiang, Edward
dc.contributor.authorAseguinolaza Gallo, Roman
dc.date.accessioned2025-09-17T13:32:49Z
dc.date.available2025-09-17T13:32:49Z
dc.date.issued2025-08
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2024-2025. Tutors: Timothy Heightman, Edward Jiangca
dc.description.abstractLearning open quantum many-body dynamics is challenging: full Liouvillian models grow exponentially with system size, and dissipation and dephasing force us to follow mixed states from noisy, limited data. These factors make routine characterisation and control difficult, so we need methods that are data-efficient, scalable, and easy to interpret. We present an interpretable, robust framework for learning Lindbladian dynamics from minimal, hardwarefriendly data. The method pairs a physics-first CPTP Lindblad model with a small Neural Differential Equation (NDE) residual and uses a two-stage curriculum (neural warm-up, then analytic-only refinement) to reliably recover coherent and dissipative parameters on challenging 1D benchmarks. There are two ways in which robustness emerges in Lindladian learning: modest physical dissipation that smoothens loss landscapes via steady-state attraction, and the NDE residual that resolves remaining nonconvexity when paired with an optimizer reset. A transient infidelity metric shows short-time power-law error and small steady-state plateaus. Extending beyond CPTP to a stochastic dissipative qubit shows failures in noise-induced or deep PT-unbroken phases that are information-limited, not optimization-limitedca
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223226
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Aseguinolaza, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology
dc.subject.classificationEquacions diferencials ordinàries
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTreballs de fi de màster
dc.subject.otherOrdinary differential equations
dc.subject.otherMachine learning
dc.subject.otherMaster's thesis
dc.titleSolving the Quantum Many-Body Lindbladian Learning Problem With Neural Differential Equationseng
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
ASEGUINOLAZA GALLO ROMAN.pdf
Mida:
4.31 MB
Format:
Adobe Portable Document Format
Descripció: