Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/216895
Classification of artin algebras
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Resum
The aim of this project is to study Artin rings which are fundamental structures which arise in broad areas of mathematics including algebraic geometry number theory and representation theory and therefore studying and classifying them can give new and deep perspectives for solving problems in many different areas.
In this thesis we start by reviewing the preliminaries to establish the Matlis duality which was introduced in [11] which was closely related to the work of Francis Sowerby Macaulay. Macaulay established a correspondence between Gorenstein Artin algebras $A=R / I$ and cyclic submodule $\langle F\rangle$ of the polynomial where $R$ is the power series ring in n variable and $S$ is polynomial ring with the module structure of $S$ depending on the characteristic of the given field. This correspondence can be seen as special case of the Matlis duality because the injective hull of $\mathbf{k}$ as $R$ module is isomorphic to $S$.
Descripció
Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Joan Elías García
Matèries (anglès)
Citació
Col·leccions
Citació
KEN, Nikhil. Classification of artin algebras. [consulta: 28 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/216895]