New boundary Harnack inequalities with right hand side
| dc.contributor.author | Ros, Xavier | |
| dc.contributor.author | Torres Latorre, Damià | |
| dc.date.accessioned | 2022-03-16T12:05:58Z | |
| dc.date.available | 2023-07-05T05:10:19Z | |
| dc.date.issued | 2021-07-05 | |
| dc.date.updated | 2022-03-16T12:05:58Z | |
| dc.description.abstract | We prove new boundary Harnack inequalities in Lipschitz domai Our main result applies to non-divergence form operators with bc divergence form operators with continuous coefficients, whereas the approach is based on the scaling and comparison arguments of [13] are sharp. As a consequence of our results, we deduce the $\mathcal{C}^{1, \alpha}$ regularity of obstacle problem and the fully nonlinear thin obstacle problem. | |
| dc.format.extent | 46 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 719092 | |
| dc.identifier.issn | 0022-0396 | |
| dc.identifier.uri | https://hdl.handle.net/2445/184172 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.jde.2021.04.012 | |
| dc.relation.ispartof | Journal of Differential Equations, 2021, vol. 288, p. 204-249 | |
| dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/801867/EU//EllipticPDE | |
| dc.relation.uri | https://doi.org/10.1016/j.jde.2021.04.012 | |
| dc.rights | cc-by (c) Ros, Xavier et al., 2021 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Problemes de contorn | |
| dc.subject.classification | Equacions diferencials el·líptiques | |
| dc.subject.other | Boundary value problems | |
| dc.subject.other | Elliptic differential equations | |
| dc.title | New boundary Harnack inequalities with right hand side | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1