Provider fairness across continents in collaborative recommender systems

dc.contributor.authorGómez, Elizabeth
dc.contributor.authorBoratto, Ludovico
dc.contributor.authorSalamó Llorente, Maria
dc.date.accessioned2023-03-02T08:52:54Z
dc.date.available2025-01-31T06:10:11Z
dc.date.issued2022-01
dc.date.updated2023-03-02T08:52:54Z
dc.description.abstractWhen a recommender system suggests items to the end-users, it gives a certain exposure to the providers behind the recommended items. Indeed, the system offers a possibility to the items of those providers of being reached and consumed by the end-users. Hence, according to how recommendation lists are shaped, the experience of under-recommended providers in online platforms can be affected. To study this phenomenon, we focus on movie and book recommendation and enrich two datasets with the continent of production of an item. We use this data to characterize imbalances in the distribution of the user-item observations and regarding where items are produced (geographic imbalance). To assess if recommender systems generate a disparate impact and (dis)advantage a group, we divide items into groups, based on their continent of production, and characterize how represented is each group in the data. Then, we run state-of-the-art recommender systems and measure the visibility and exposure given to each group. We observe disparities that favor the most represented groups. We overcome these phenomena by introducing equity with a re-ranking approach that regulates the share of recommendations given to the items produced in a continent (visibility) and the positions in which items are ranked in the recommendation list (exposure), with a negligible loss in effectiveness, thus controlling fairness of providers coming from different continents. A comparison with the state of the art shows that our approach can provide more equity for providers, both in terms of visibility and of exposure.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec720750
dc.identifier.issn0306-4573
dc.identifier.urihttps://hdl.handle.net/2445/194441
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.ipm.2021.102719
dc.relation.ispartofInformation Processing & Management, 2022, vol. 59, num. 1
dc.relation.urihttps://doi.org/10.1016/j.ipm.2021.102719
dc.rightscc-by-nc-nd (c) Elsevier, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationSistemes d'ajuda a la decisió
dc.subject.classificationAprenentatge automàtic
dc.subject.otherArtificial intelligence
dc.subject.otherDecision support systems
dc.subject.otherMachine learning
dc.titleProvider fairness across continents in collaborative recommender systems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
720750.pdf
Mida:
759.94 KB
Format:
Adobe Portable Document Format