Anatomical landmarks localization for capsule endoscopy studies

dc.contributor.authorLaiz Treceño, Pablo
dc.contributor.authorVitrià i Marca, Jordi
dc.contributor.authorGilabert Roca, Pere
dc.contributor.authorWenzek, Hagen
dc.contributor.authorMalagelada Grau, Cristina
dc.contributor.authorWatson, Angus J. M.
dc.contributor.authorSeguí Mesquida, Santi
dc.date.accessioned2024-02-22T12:10:41Z
dc.date.available2024-02-22T12:10:41Z
dc.date.issued2023-09-01
dc.date.updated2024-02-22T12:10:41Z
dc.description.abstractWireless Capsule Endoscopy is a medical procedure that uses a small, wireless camera to capture images of the inside of the digestive tract. The identification of the entrance and exit of the small bowel and of the large intestine is one of the first tasks that need to be accomplished to read a video. This paper addresses the design of a clinical decision support tool to detect these anatomical landmarks. We have developed a system based on deep learning that combines images, timestamps, and motion data to achieve state-of-the-art results. Our method does not only classify the images as being inside or outside the studied organs, but it is also able to identify the entrance and exit frames. The experiments performed with three different datasets (one public and two private) show that our system is able to approximate the landmarks while achieving high accuracy on the classification problem (inside/outside of the organ). When comparing the entrance and exit of the studied organs, the distance between predicted and real landmarks is reduced from 1.5 to 10 times with respect to previous state-of-the-art methods.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec739216
dc.identifier.issn0895-6111
dc.identifier.urihttps://hdl.handle.net/2445/207961
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.compmedimag.2023.102243
dc.relation.ispartofComputerized Medical Imaging and Graphics, 2023, vol. 108
dc.relation.urihttps://doi.org/10.1016/j.compmedimag.2023.102243
dc.rightscc-by (c) Pablo Laiz Treceño et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationAnatomia humana
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationDiagnòstic per la imatge
dc.subject.otherMachine learning
dc.subject.otherLearning classifier systems
dc.subject.otherHuman anatomy
dc.subject.otherCapsule endoscopy
dc.subject.otherDiagnostic imaging
dc.titleAnatomical landmarks localization for capsule endoscopy studies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
828149.pdf
Mida:
2.06 MB
Format:
Adobe Portable Document Format