Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/200941
Gravitational wave search with Machine Learning
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We train two Deep Learning (DL) classifiers, based on VGG19, using Gravitational Waves (GW) simulated data. The first of them (from now on, N-S) is capable of distinguishing between plain noise and a simulated signal with injected noise. The second one (from now on, L-U) is trained with noisy GW signals and is able to tell if said signals are lensed GW or not. For our simulations, we consider Binary Black Holes (BBH) systems with spinless members that have masses between 10 and 80 solar masses. The luminosity distances detector-source lie between 500 and 3500 Mpc and we discard events with Signal-to-Noise Ratio (SNR) smaller than 5 or bigger than 50.
We feed our models with images of the Q transform of these strains of data, finding that VGG19 performs well in both classifications: when classifying the test sets, N-S achieved an accuracy of 100%, while L-U achieved an accuracy of 98%. The conclusion of this work is that it ratifies the potential GW has, not only in the detection of GW signals, but also in the study of other predicted effects such as lensing.
Descripció
Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutor: Oleg Bulashenko
Matèries (anglès)
Citació
Col·leccions
Citació
BADA NERÍN, Roberto. Gravitational wave search with Machine Learning. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/200941]