Incidència: Per tasques de manteniment, el Dipòsit Digital només funciona per a la consulta.

 
Carregant...
Miniatura

Tipus de document

Objecte de conferència

Versió

Versió acceptada

Data de publicació

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220330

Mitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderly

Títol de la revista

ISSN de la revista

Títol del volum

Resum

Diagnosing Alzheimer’s disease (AD) presents significant challenges in the oldest populations due to overlapping symptoms of normal cognitive aging and early-stage dementia. While AI algorithms have matched specialist performance in diagnosing AD, they tend to produce unreliable results for the oldest populations, generating false positives that increase radiologist workloads and healthcare costs. In this study, we focus on mitigating overdiagnosis bias in CNN-based AD diagnosis for these groups. We present a post-hoc bias mitigation technique that significantly improves fairness by reducing overdiagnosis and enhances reliability by improving calibration without compromising overall model accuracy. Code is available at: https://github.com/ngoc-vien-dang/C-GTOP.

Descripció

Citació

Citació

NGOC DANG, Vien, CASAMITJANA, Adrià, HERNÁNDEZ-GONZÁLEZ, Jerónimo, LEKADIR, Karim. Mitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderly. _Comunicació a: Ethics and Fairness in Medical Imaging: Second International Workshop on Fairness of AI in Medical Imaging_. FAIMI 2024. Vol.  and Third International Workshop on Ethical and Philosophical Issues in Medical Imaging, núm. EPIMI 2024, pàgs. Held in Conjunction with MICCAI 2024. [consulta: 25 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/220330]

Exportar metadades

JSON - METS

Compartir registre