Carregant...
Miniatura

Tipus de document

Objecte de conferència

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/219981

Sharing generative models instead of private data: a simulation study on mammography patch classification

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Early detection of breast cancer in mammography screening via deep-learning based computer-aided detection systems shows promising potential in improving the curability and mortality rates of breast cancer. However, many clinical centres are restricted in the amount and heterogeneity of available data to train such models to (i) achieve promising performance and to (ii) generalise well across acquisition protocols and domains. As sharing data between centres is restricted due to patient privacy concerns, we propose a potential solution: sharing trained generative models between centres as substitute for real patient data. In this work, we use three well known mammography datasets to simulate three different centres, where one centre receives the trained generator of Generative Adversarial Networks (GANs) from the two remaining centres in order to augment the size and heterogeneity of its training dataset. We evaluate the utility of this approach on mammography patch classification on the test set of the GAN-receiving centre using two different classification models, (a) a convolutional neural network and (b) a transformer neural network. Our experiments demonstrate that shared GANs notably increase the performance of both transformer and convolutional classification models and highlight this approach as a viable alternative to inter-centre data sharing. Find our code at https://github.com/ zuzaanto/mammo_gans_iwbi2022

Citació

Citació

SZAFRANOWSKA, Zuzanna, OSUALA, Richard, BREIER, Bennet, KUSHIBAR, Kaisar, LEKADIR, Karim, DÍAZ, Oliver. Sharing generative models instead of private data: a simulation study on mammography patch classification. _Comunicació a: Proc. SPIE 12286_. 16th International Workshop on Breast Imaging (IWBI2022). Vol.  122860Q (13 July 2022). [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/219981]

Exportar metadades

JSON - METS

Compartir registre