Questions about extreme points

dc.contributor.authorDyakonov, Konstantin M.
dc.date.accessioned2025-01-20T07:55:08Z
dc.date.available2025-01-20T07:55:08Z
dc.date.issued2023-05-02
dc.date.updated2025-01-20T07:55:09Z
dc.description.abstractWe discuss the geometry of the unit ball —specifically, the structure of its extreme points (if any)— in subspaces of $L^{1}$ and $L^{\infty}$ on the circle that are formed by functions with prescribed spectral gaps. A similar issue is considered for kernels of Toeplitz operators in $H^{\infty}$.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751811
dc.identifier.issn0378-620X
dc.identifier.urihttps://hdl.handle.net/2445/217653
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00020-023-02733-8
dc.relation.ispartofIntegral Equations and Operator Theory, 2023, vol. 95, num.2
dc.relation.urihttps://doi.org/10.1007/s00020-023-02733-8
dc.rightscc by (c) Konstantin M. Dyakonov, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi harmònica
dc.subject.classificationFuncions analítiques
dc.subject.classificationFuncions de variables complexes
dc.subject.classificationEspais de Hardy
dc.subject.otherHarmonic analysis
dc.subject.otherAnalytic functions
dc.subject.otherFunctions of complex variables
dc.subject.otherHardy spaces
dc.titleQuestions about extreme points
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870459.pdf
Mida:
323.89 KB
Format:
Adobe Portable Document Format