Algorithmic causal effect identification

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.advisorParafita Martínez, Álvaro
dc.contributor.authorPedemonte Bernat, Martí
dc.date.accessioned2022-01-24T09:55:41Z
dc.date.available2022-01-24T09:55:41Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Jordi Vitrià i Marca i Álvaro Parafita Martínezca
dc.description.abstract[en] Our evolution as a species made a huge step forward when we understood the relationships between causes and effects. These associations may be trivial for some events, but they are not in complex scenarios. To rigorously prove that some occurrences are caused by others, causal theory and causal inference were formalized, introducing the do-operator and its associated rules. The main goal of this project is to understand and implement in Python some algorithms to compute conditional and non-conditional causal queries from observational data. To this end, we first present some basic background knowledge on probability and graph theory, before introducing important results on causal theory, used in the construction of the algorithms. We then thoroughly study the identification algorithms presented by Shpitser and Pearl in 2006 [SP 2006a, SP 2006b], explaining our implementation in Python alongside. The main identification algorithm can be seen as a repeated application of the rules of do-calculus, and it eventually either returns an expression for the causal query from experimental probabilities or fails to identify the causal effect, in which case the effect is nonidentifiable. We introduce our newly developed Python library and give some usage examples towards the end of the dissertation.ca
dc.format.extent62 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/182557
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Martí Pedemonte Bernat, 2021
dc.rightscodi: GPL (c) Martí Pedemonte Bernat, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationCausalitatca
dc.subject.classificationProbabilitatsca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationTeoria de grafsca
dc.subject.classificationProgramació (Matemàtica)ca
dc.subject.otherCausationen
dc.subject.otherProbabilitiesen
dc.subject.otherComputer softwareen
dc.subject.otherComputer algorithmsen
dc.subject.otherGraph theoryen
dc.subject.otherBachelor's thesesen
dc.subject.otherMathematical programmingen
dc.titleAlgorithmic causal effect identificationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
41.75 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_marti_pedeminte_bernat.pdf
Mida:
946.22 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria