Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Romero, 2026
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/227011

Synthetic Cross-sequence Generation of MRI Images using Deep Learning Networks

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging modality that employs multiple acquisition sequences to generate complementary tissue contrasts. However, in clinical practice, not all sequences are available due to time, cost, or patient-related issues. In this work, we investigate deep learning–based supervised image-to-image translation for synthetic cross-sequence MRI generation using a dataset of 148 patients. T2, FLAIR, and contrast-enhanced T1 (T1GD) images are synthesized from T1 inputs using U-Net–based encoder–decoder models and conditional GANs (pix2pix), under full-resolution and patch-based training strategies. Evaluation using Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) shows that UNet models with tailored loss functions achieve results comparable to state-of-the-art approaches, outperforming pix2pix. Finally, qualitative evaluation revealed that conventional metrics fail to capture sequence-specific localized regions, highlighting the need for task-aware evaluation criteria.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2026, Tutors: Aida Niñerola Baizán, Arnau Farré Melero

Citació

Citació

ROMERO DÍAZ, Jacobo. Synthetic Cross-sequence Generation of MRI Images using Deep Learning Networks. [consulta: 22 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/227011]

Exportar metadades

JSON - METS

Compartir registre