Discovering genes and microRNAs involved in human lung development unveils IGFBP3/miR-34a dynamics and their relevance for alveolar differentiation

dc.contributor.authorAcosta Plasencia, Melissa
dc.contributor.authorCastellano, Joan Josep
dc.contributor.authorDíaz Sánchez, Tania
dc.contributor.authorHe, Yangyi
dc.contributor.authorMarrades Sicart, Ramon Ma.
dc.contributor.authorNavarro Ponz, Alfons
dc.date.accessioned2025-06-30T17:58:12Z
dc.date.available2025-06-30T17:58:12Z
dc.date.issued2024-08-26
dc.date.updated2025-06-30T17:58:12Z
dc.description.abstractBackground: During pseudoglandular stage of the human lung development the primitive bronchial buds are initially conformed by simple tubules lined by endoderm-derived epithelium surrounded by mesenchyme, which will progressively branch into airways and start to form distal epithelial saculles. For first time alveolar type II (AT2) pneumocytes appears. This study aims to characterize the genes and microRNAs involved in this differentiation process and decipher its role in the starting alveolar differentiation. Methods: Gene and microRNA profiling was performed in human embryonic lungs from 7 to 12 post conception weeks (pcw). Protein expression location of candidate genes were analyzed by immunofluorescense in embryonic lung tissue sections. mRNA/miRNA target pairs were identified using computational approaches and their expression was studied in purified epithelial/mesenchymal cell populations and in isolated tips and stalks from the bronchial tree. Additionally, silencing experiments in human embryonic lung mesenchymal cells and in human embryonic tip-derived lung organoids were performed, as well as organoid differentiation studies. AT2 cell markers were studied by qRT-PCR and by immunofluorescence. The TGFB-β phosphorylated pathways was analyzed with membrane protein arrays. Lung explants were cultured in air/liquid interface with/without peptides. Results: We identified 88 differentially expressed genes, including IGFBP3. Although IGFBP3 mRNA was detected in both epithelial and mesenchymal populations, the protein was restricted to the epithelium, indicating post-transcriptional regulation preventing IGFBP3 protein expression in the mesenchyme. MicroRNA profiling identified miR-34a as an IGFBP3 regulator. miR-34a was up-regulated in mesenchymal cells, and its silencing in human embryonic lung mesenchymal cells increased IGFBP3 levels. Additionally, IGFBP3 expression showed a marked downregulation from 7 to 12 pcw, suggesting its involvement in the differentiation process. The differentiation of human tip-derived lung embryonic organoids showed a drastic reduction in IGFBP3, supported by the scRNAseq data. IGFBP3 silencing in organoids activated an alveolar-like differentiation process characterized by stem cell markers downregulation and upregulation of AT2 markers. This process was mediated by TGFβ signalling inhibition and BMP pathway activation. Conclusions: The IGFBP3/miR-34a axis restricts IGFBP3 expression in the embryonic undifferentiated lung epithelium, and the progressive downregulation of IGFBP3 during the pseudoglandular stage is required for alveolar differentiation.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec750206
dc.identifier.issn1757-6512
dc.identifier.pmid39183355
dc.identifier.urihttps://hdl.handle.net/2445/221929
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/s13287-024-03883-1
dc.relation.ispartofStem Cell Research & Therapy, 2024, vol. 15, num.1
dc.relation.urihttps://doi.org/10.1186/s13287-024-03883-1
dc.rightscc-by-nc-nd (c) Acosta Plasencia, Melissa et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
dc.subject.classificationEmbriologia
dc.subject.classificationDiferenciació cel·lular
dc.subject.classificationMicro RNAs
dc.subject.classificationPulmó
dc.subject.classificationGenètica
dc.subject.otherEmbryology
dc.subject.otherCell diferentiation
dc.subject.otherMicroRNAs
dc.subject.otherLung
dc.subject.otherGenetics
dc.titleDiscovering genes and microRNAs involved in human lung development unveils IGFBP3/miR-34a dynamics and their relevance for alveolar differentiation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
865940.pdf
Mida:
4.11 MB
Format:
Adobe Portable Document Format