Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223463
Stabilizer codes and absolutely maximally entangled states for mixed-dimensional systems
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Resum
A major difficulty in quantum computation is the ability to implement fault tolerant computations, protecting information against undesired interactions with the environment. The theory of stabiliser codes has been developed over recent years which protects information when storing or applying computations in Hilbert spaces where the local dimension is fixed, i.e. in Hilbert spaces of the form (CD)⊗n. If D is a prime power then one can consider stabiliser codes over finite fields [KKKS06], which allows a deeper mathematical structure to
be used to develop stabiliser codes. However, there is no practical reason that the subsystems should be required to have the same local dimension and in this work, we introduce a stabiliser formalism for mixed dimension Hilbert spaces, i.e. of the form CD1 ⊗ · · · ⊗ CDn. We redefine entanglement measures
for these Hilbert spaces and follow [HESG18] to define absolutely maximally entangled states as states which maximize this entanglement measure, and give an example of such a state on a mixed dimension Hilbert space.
Descripció
Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2024-2025. Tutor: Simeon Ball
Matèries (anglès)
Citació
Citació
ZHANG, Raven. Stabilizer codes and absolutely maximally entangled states for mixed-dimensional systems. [consulta: 28 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/223463]