A topological classifier to characterize brain states: When shape matters more than variance

dc.contributor.authorCecchini, Gloria
dc.contributor.authorFerrà Marcús, Aina
dc.contributor.authorNobbe Fisas, Fritz Pere
dc.contributor.authorCasacuberta, Carles
dc.contributor.authorCos Aguilera, Ignasi
dc.date.accessioned2025-01-28T10:49:22Z
dc.date.available2025-01-28T10:49:22Z
dc.date.issued2023-10-02
dc.date.updated2025-01-28T10:49:22Z
dc.description.abstractDespite the remarkable accuracies attained by machine learning classifiers to separate complex datasets in a supervised fashion, most of their operation falls short to provide an informed intuition about the structure of data, and, what is more important, about the phenomena being characterized by the given datasets. By contrast, topological data analysis (TDA) is devoted to study the shape of data clouds by means of persistence descriptors and provides a quantitative characterization of specific topological features of the dataset under scrutiny. Here we introduce a novel TDA-based classifier that works on the principle of assessing quantifiable changes on topological metrics caused by the addition of new input to a subset of data. We used this classifier with a high-dimensional electro-encephalographic (EEG) dataset recorded from eleven participants during a previous decision-making experiment in which three motivational states were induced through a manipulation of social pressure. We calculated silhouettes from persistence diagrams associated with each motivated state with a ready-made band-pass filtered version of these signals, and classified unlabeled signals according to their impact on each reference silhouette. Our results show that in addition to providing accuracies within the range of those of a nearest neighbour classifier, the TDA classifier provides formal intuition of the structure of the dataset as well as an estimate of its intrinsic dimension. Towards this end, we incorporated variance-based dimensionality reduction methods to our dataset and found that in most cases the accuracy of our TDA classifier remains essentially invariant beyond a certain dimension.
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec739328
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/2445/218049
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0292049
dc.relation.ispartofPLoS One, 2023, vol. 18, num.10
dc.relation.urihttps://doi.org/10.1371/journal.pone.0292049
dc.rightscc-by (c) Aina Ferrà Marcús et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationElectroencefalografia
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationTopologia
dc.subject.classificationAprenentatge automàtic
dc.subject.otherElectroencephalography
dc.subject.otherNeural networks (Computer science)
dc.subject.otherTopology
dc.subject.otherMachine learning
dc.titleA topological classifier to characterize brain states: When shape matters more than variance
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
828456.pdf
Mida:
2.29 MB
Format:
Adobe Portable Document Format