Graph-based coevolutionary approach on SARS-CoV-2 spike protein

dc.contributor.advisorIbañes Miguez, Marta
dc.contributor.advisorPontes, Camila
dc.contributor.advisorRuiz-Serra, Victoria
dc.contributor.authorNovell Mazzara, Alice
dc.date.accessioned2022-09-06T13:48:22Z
dc.date.available2022-09-06T13:48:22Z
dc.date.issued2022-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutores: Marta Ibañes, Camila Pontes, Victoria Ruizca
dc.description.abstractAmino acids that coevolve can be indicative of functionality, so coevolution-based methods can be used to detect important amino acids in proteins, known as hotspots. Here, we apply a recently published method based on network metrics and coevolutionary information to detect functional hotspots in the SARS-CoV-2 spike protein. We found 275 potential hotspots withavailable experimental information in the literature for 4 of them, for example, position 614 (ASP), known to increment the infectivity of SARS-CoV-2 towards human host cells. In addition, a hotspot enrichment analysis was performed, as well as a study of the relative solvent accessibility of hotspot versus non-hotspot positions for the receptor binding domain. The hotspots showed less surface area available when bound to the human receptor compared to when not bound, which does not occur for non-hotspot positions, indicating that the hotspots obtained may be important for the binding of the spike protein to the receptor of the host cellca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/188762
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Novell, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationSARS-CoV-2cat
dc.subject.classificationCoevoluciócat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherSARS-CoV-2eng
dc.subject.otherCoevolutioneng
dc.subject.otherBachelor's theseseng
dc.titleGraph-based coevolutionary approach on SARS-CoV-2 spike proteineng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
NOVELL MAZZARA ALICE_6057553_assignsubmission_file_TFG_Novell_Mazzara_Alice.pdf
Mida:
1.83 MB
Format:
Adobe Portable Document Format
Descripció: