Dynamics of the N(4Su) + NO (X2Π) → N2 (X1Σg+) + O (3Pg) atmosferic reaction on the 3A'' potential energy surface. II. The effect of reagent translational, vibrational, and rotational energies

dc.contributor.authorGilibert, Miquel
dc.contributor.authorAguilar Navarro, Antonio
dc.contributor.authorGonzález Pérez, Miguel
dc.contributor.authorSayós Ortega, Ramón
dc.date.accessioned2020-06-04T07:33:18Z
dc.date.available2020-06-04T07:33:18Z
dc.date.issued1998
dc.date.updated2020-06-04T07:33:18Z
dc.description.abstractThe effect of translational vibrational, and rotational energies on the dynamics of the N(4S,) +NO(X 211) -t N2(X '2:) +0( 'Pg) reaction has been examined using a Sorbie-Murrell analytical fitting of a grid of ab initio configuration interaction (CI) points for the 3A" ground potential energy surface reported by the authors in a previous work. Translational energy is shown to increase total reaction cross section for all the initial rovibrational states of reactants considered. The reaction mode analysis points towards a direct mechanism and a strong influence of the shape of the potential energy surface on the reactivity, especially at low relative collision energies. Vibrational excitation of the NO reactant molecule changes the total reaction cross section values moderately, while increasing the initial rotational states of NO at low fixed relative collision energies decreases the reaction cross section sharply, eventually becoming zero for the highest J values explored. By comparing with model calculations on the same surface involving extreme H+HL and L+ LH mass combinations, the microscopic reaction mechanism is shown to imply product molecules being created with rotational angular momentum (J') oriented preferentially antiparallel with respect: to their orbital angular momentum (1') at low relative energies, with loss of orientation for higher relative energies. Thus, the surface used indicates a strong vector correlation between 1' and J' and also an important influence in equipartitioning total angular momentum between the rotational and orbital angular momenta of products. Comparison with unfortunately scarce experimental data (e.g., fraction of vibrational energy in products and rate constants) shows a very good agreement.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec078595
dc.identifier.issn0021-9606
dc.identifier.urihttps://hdl.handle.net/2445/164239
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/1.463787
dc.relation.ispartofJournal of Chemical Physics, 1998, vol. 99, num. 8, p. 5542-5553
dc.relation.urihttps://doi.org/10.1063/1.463787
dc.rights(c) American Institute of Physics , 1998
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationDinàmica molecular
dc.subject.classificationQuímica de superfícies
dc.subject.otherMolecular dynamics
dc.subject.otherSurface chemistry
dc.titleDynamics of the N(4Su) + NO (X2Π) → N2 (X1Σg+) + O (3Pg) atmosferic reaction on the 3A'' potential energy surface. II. The effect of reagent translational, vibrational, and rotational energies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
078595.pdf
Mida:
1.86 MB
Format:
Adobe Portable Document Format