Diffusion of passive scalars under stochastic convection

dc.contributor.authorCareta Pons, Agustícat
dc.contributor.authorSagués i Mestre, Francesccat
dc.contributor.authorSancho, José M.cat
dc.date.accessioned2012-05-03T12:46:32Z
dc.date.available2012-05-03T12:46:32Z
dc.date.issued1994-01-15
dc.description.abstractThe diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.eng
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec72984
dc.identifier.issn0021-8979
dc.identifier.urihttps://hdl.handle.net/2445/24895
dc.language.isoengeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1063/1.868089
dc.relation.ispartofPhysics of Fluids, 1994, vol. 6, num. 1, p. 349-355
dc.relation.urihttp://dx.doi.org/10.1063/1.868089
dc.rights(c) American Institute of Physics, 1994
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationMecànica de fluidscat
dc.subject.classificationTurbulènciacat
dc.subject.classificationHidrodinàmicacat
dc.subject.classificationEstadísticacat
dc.subject.classificationMètode de Montecarlocat
dc.subject.otherFluid mechanicseng
dc.subject.otherTurbulenceeng
dc.subject.otherHydrodynamicseng
dc.subject.otherStatisticseng
dc.subject.otherMonte Carlo methodeng
dc.titleDiffusion of passive scalars under stochastic convectioneng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
72984.pdf
Mida:
824.39 KB
Format:
Adobe Portable Document Format