Vessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation

dc.contributor.authorNgoc Dang, Vien
dc.contributor.authorGalati, Francesco
dc.contributor.authorCortese, Rosa
dc.contributor.authorDi Giacomo, Giuseppe
dc.contributor.authorMarconetto, Viola
dc.contributor.authorMathur, Prateek
dc.contributor.authorLekadir, Karim, 1977-
dc.contributor.authorLorenzi, Marco
dc.contributor.authorPrados, Ferran
dc.contributor.authorZuluaga, Maria A.
dc.date.accessioned2022-11-08T09:55:29Z
dc.date.available2022-11-08T09:55:29Z
dc.date.issued2022-01
dc.date.updated2022-11-08T09:55:29Z
dc.description.abstractDeep learning techniques for 3D brain vessel image segmentation have not been as successful as in the segmentation of other organs and tissues. This can be explained by two factors. First, deep learning techniques tend to show poor performances at the segmentation of relatively small objects compared to the size of the full image. Second, due to the complexity of vascular trees and the small size of vessels, it is challenging to obtain the amount of annotated training data typically needed by deep learning methods. To address these problems, we propose a novel annotation-efficient deep learning vessel segmentation framework. The framework avoids pixel-wise annotations, only requiring weak patch-level labels to discriminate between vessel and non-vessel 2D patches in the training set, in a setup similar to the CAPTCHAs used to differentiate humans from bots in web applications. The user-provided weak annotations are used for two tasks: (1) to synthesize pixel-wise pseudo-labels for vessels and background in each patch, which are used to train a segmentation network, and (2) to train a classifier network. The classifier network allows to generate additional weak patch labels, further reducing the annotation burden, and it acts as a second opinion for poor quality images. We use this framework for the segmentation of the cerebrovascular tree in Time-of-Flight angiography (TOF) and Susceptibility-Weighted Images (SWI). The results show that the framework achieves state-of-the-art accuracy, while reducing the annotation time by ∼77% w.r.t. learning-based segmentation methods using pixel-wise labels for training.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec722123
dc.identifier.issn1361-8415
dc.identifier.urihttps://hdl.handle.net/2445/190550
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.media.2021.102263
dc.relation.ispartofMedical Image Analysis, 2022, vol. 75, num. 102263
dc.relation.urihttps://doi.org/10.1016/j.media.2021.102263
dc.rightscc-by (c) Ngoc Dang, Vien et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationProcessament digital d'imatges
dc.subject.classificationDiagnòstic per la imatge
dc.subject.otherMachine learning
dc.subject.otherDigital image processing
dc.subject.otherDiagnostic imaging
dc.titleVessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
722123.pdf
Mida:
4.33 MB
Format:
Adobe Portable Document Format